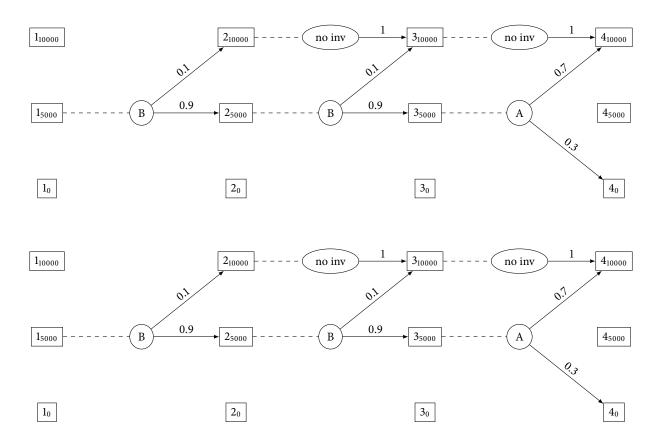
Lesson 16.

Stochastic dynamic programming, cont.

1 The problem

Suppose you have \$5,000 to invest, and at the beginning of each of the next 3 years, you have an opportunity to invest in either of two investments: A or B. Both investments have uncertain profits. For an investment of \$5,000, the profits are as follows:


Investment	Profit (\$)	Probability
A	-5,000 5,000	0.3 0.7
В	0 5,000	0.9 0.1

You are allowed to make at most one investment each year, and can invest only \$5,000 each time. Any additional money accumulated is left idle.

Formulate a stochastic dynamic program to find an investment policy that maximizes the probability you will have \$10,000 after 3 years.

2 Warm up

Consider the following investment policy. What is the probability of having at least \$10,000?

Stages:					
States:					
Allowable d	ecisions x_t at sta	n ige t and state n	:		
Cleatab of b		mamaiti am mmah al	::1:t: dt		
Sketch of ba	asic structure – t	ransition probal	oilities and cont	ributions:	
Sketch of ba	asic structure – t	ransition probal	oilities and cont	ributions:	
Sketch of ba	asic structure – t	ransition probal	oilities and cont	ributions:	
Sketch of ba	asic structure – t	ransition probal	oilities and cont	ributions:	
Sketch of ba	usic structure – t	ransition probal	oilities and cont	ributions:	
Sketch of ba	usic structure – t	ransition probal	oilities and cont	ributions:	
Sketch of ba	usic structure – t	ransition probal	oilities and cont	ributions:	
Sketch of ba	usic structure – t	ransition probal	pilities and cont	ributions:	
Sketch of ba	asic structure – t	ransition probal	pilities and cont	ributions:	
Sketch of ba	asic structure – t	ransition probal	pilities and cont	ributions:	
Sketch of ba	asic structure – t	ransition probal	pilities and cont	ributions:	
Sketch of ba	asic structure – t	ransition probal	pilities and cont	ributions:	
Sketch of ba	usic structure – t	ransition probal	pilities and cont	ributions:	
Sketch of ba	asic structure – t	ransition probal	pilities and cont	ributions:	
Sketch of ba	asic structure – t	ransition probab	pilities and cont	ributions:	

• In words,	the value-to-go $f_t(n)$ at st	tage t and state n is:	
• Value-to-	go recursion		
j	$f_t(n) = \min_{x_t \text{ allowable}} \left\{ \sum_{m \text{ state}} p(t) \right\}$	$(m n,t,x_t)\Big[c(m n,t,x_t)+f_{t+1}$	(m) for stages t and states n
Boundary	conditions:		
• Desired v	alue-to-go function value:		
	0		

• Solving the recursion on $f_t(n)$, we obtain:

t	n	$f_t(n)$	x_t^*
1	0	0	no investment
1	5000	0.757	В
1	10000	1	no investment
2	0	0	no investment
2	5000	0.73	В
2	10000	1	no investment
3	0	0	no investment
3	5000	0.7	A
3	10000	1	no investment

• Based on this, what should your investment policy be?

,	What is your probability of having \$10000?